(x^2-2yz^2-y^2)(y^2+x)=0

Simple and best practice solution for (x^2-2yz^2-y^2)(y^2+x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-2yz^2-y^2)(y^2+x)=0 equation:


Simplifying
(x2 + -2yz2 + -1y2)(y2 + x) = 0

Reorder the terms:
(x2 + -2yz2 + -1y2)(x + y2) = 0

Multiply (x2 + -2yz2 + -1y2) * (x + y2)
(x2(x + y2) + -2yz2 * (x + y2) + -1y2 * (x + y2)) = 0
((x * x2 + y2 * x2) + -2yz2 * (x + y2) + -1y2 * (x + y2)) = 0

Reorder the terms:
((x2y2 + x3) + -2yz2 * (x + y2) + -1y2 * (x + y2)) = 0
((x2y2 + x3) + -2yz2 * (x + y2) + -1y2 * (x + y2)) = 0
(x2y2 + x3 + (x * -2yz2 + y2 * -2yz2) + -1y2 * (x + y2)) = 0
(x2y2 + x3 + (-2xyz2 + -2y3z2) + -1y2 * (x + y2)) = 0
(x2y2 + x3 + -2xyz2 + -2y3z2 + (x * -1y2 + y2 * -1y2)) = 0
(x2y2 + x3 + -2xyz2 + -2y3z2 + (-1xy2 + -1y4)) = 0

Reorder the terms:
(-2xyz2 + -1xy2 + x2y2 + x3 + -2y3z2 + -1y4) = 0
(-2xyz2 + -1xy2 + x2y2 + x3 + -2y3z2 + -1y4) = 0

Solving
-2xyz2 + -1xy2 + x2y2 + x3 + -2y3z2 + -1y4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| 42r-2(13-5r)+7=35 | | 8=3x+4 | | 5t-14=-4 | | 4y^2-x^2-24y+32=0 | | 3x-3x=4 | | 7+(p+8)= | | 7-(-n-8)= | | 50+3x=80+7x | | 9(4d-9)=-31-2d | | (7t-2)-(3t+7)=3(7-3t) | | -16+12x=9x+23 | | x^2+7x=34 | | -8-(10-k)= | | 6y+12=4(y+7)-2 | | -9-(-5-3x)=21 | | 5+(j-6)= | | 5/10x-1/10=-29/10 | | 2+(e-5)= | | 2/3x-1/6=1/2x+5/6 | | 5+(d-2)= | | f(4)=4 | | m-8=o | | 2e^4x-7e^2x-15=0 | | 10(1+3q)=-20 | | r^2+42=13r | | 6+(t-6)= | | -7n+9+2n=-29 | | 2m^2-m=15 | | 8-7x=-62 | | 7x+5=4x+38 | | -4z=-32 | | 120x-4x^2=0 |

Equations solver categories